Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoresponsivity of ultraviolet detectors based on InxAlyGa1-x-yN quaternary alloys

Identifieur interne : 011D50 ( Main/Repository ); précédent : 011D49; suivant : 011D51

Photoresponsivity of ultraviolet detectors based on InxAlyGa1-x-yN quaternary alloys

Auteurs : RBID : Pascal:00-0336877

Descripteurs français

English descriptors

Abstract

We describe the growth, fabrication, and characterization of an ultraviolet (UV) photoconductive detector based on InxAlyGa1-x-yN quaternary alloy that is lattice matched to GaN. The detector consisted of 0.1 μm InxAlyGa1-x-yN alloy grown on 0.5-1.0 μm GaN epilayer by metalorganic chemical vapor deposition. With varying indium concentration, the cut-off wavelength of the InxAlyGa1-x-yN detectors could be varied to the deep UV range. The most important and intriguing result is that the responsivity of the InxAlyGa1-x-yN quaternary alloy exceeded that of AlGaN alloy of a comparable cutoff wavelength by a factor of five. This makes the nitride quaternary alloy very important material for solar blind UV detectors applications particularly in the deep UV range where Al rich AlGaN alloys have problems with low quantum efficiency and cracks due in part to lattice mismatch with GaN. The advantages of InxAlyGa1-x-yN quaternary over AlGaN ternary alloys for UV detector applications are also discussed. © 2000 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0336877

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoresponsivity of ultraviolet detectors based on In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys</title>
<author>
<name sortKey="Oder, T N" uniqKey="Oder T">T. N. Oder</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, J Y" uniqKey="Lin J">J. Y. Lin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, H X" uniqKey="Jiang H">H. X. Jiang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0336877</idno>
<date when="2000-08-07">2000-08-07</date>
<idno type="stanalyst">PASCAL 00-0336877 AIP</idno>
<idno type="RBID">Pascal:00-0336877</idno>
<idno type="wicri:Area/Main/Corpus">012A95</idno>
<idno type="wicri:Area/Main/Repository">011D50</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Aluminium nitrides</term>
<term>CVD</term>
<term>Experimental study</term>
<term>Fabrication</term>
<term>Gallium compounds</term>
<term>Gallium nitrides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Indium nitrides</term>
<term>MOCVD</term>
<term>Photoconducting devices</term>
<term>Photodetectors</term>
<term>Semiconductor growth</term>
<term>Semiconductor thin films</term>
<term>Spectral response</term>
<term>Ultraviolet detectors</term>
<term>Ultraviolet radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8560G</term>
<term>8105E</term>
<term>7361E</term>
<term>7866F</term>
<term>4279P</term>
<term>8115G</term>
<term>8115K</term>
<term>Etude expérimentale</term>
<term>Photodétecteur</term>
<term>Rayonnement UV</term>
<term>Indium nitrure</term>
<term>Aluminium nitrure</term>
<term>Gallium nitrure</term>
<term>Fabrication</term>
<term>Dépôt chimique phase vapeur</term>
<term>Réponse spectrale</term>
<term>Indium composé</term>
<term>Aluminium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Détecteur UV</term>
<term>Méthode MOCVD</term>
<term>Croissance semiconducteur</term>
<term>Dispositif photoconducteur</term>
<term>Couche mince semiconductrice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe the growth, fabrication, and characterization of an ultraviolet (UV) photoconductive detector based on In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloy that is lattice matched to GaN. The detector consisted of 0.1 μm In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N alloy grown on 0.5-1.0 μm GaN epilayer by metalorganic chemical vapor deposition. With varying indium concentration, the cut-off wavelength of the In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N detectors could be varied to the deep UV range. The most important and intriguing result is that the responsivity of the In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloy exceeded that of AlGaN alloy of a comparable cutoff wavelength by a factor of five. This makes the nitride quaternary alloy very important material for solar blind UV detectors applications particularly in the deep UV range where Al rich AlGaN alloys have problems with low quantum efficiency and cracks due in part to lattice mismatch with GaN. The advantages of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary over AlGaN ternary alloys for UV detector applications are also discussed. © 2000 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>77</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoresponsivity of ultraviolet detectors based on In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ODER (T. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIN (J. Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANG (H. X.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>791-793</s1>
</fA20>
<fA21>
<s1>2000-08-07</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0336877</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We describe the growth, fabrication, and characterization of an ultraviolet (UV) photoconductive detector based on In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloy that is lattice matched to GaN. The detector consisted of 0.1 μm In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N alloy grown on 0.5-1.0 μm GaN epilayer by metalorganic chemical vapor deposition. With varying indium concentration, the cut-off wavelength of the In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N detectors could be varied to the deep UV range. The most important and intriguing result is that the responsivity of the In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloy exceeded that of AlGaN alloy of a comparable cutoff wavelength by a factor of five. This makes the nitride quaternary alloy very important material for solar blind UV detectors applications particularly in the deep UV range where Al rich AlGaN alloys have problems with low quantum efficiency and cracks due in part to lattice mismatch with GaN. The advantages of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary over AlGaN ternary alloys for UV detector applications are also discussed. © 2000 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B40B79P</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8560G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>4279P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>8115K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Photodétecteur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photodetectors</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Rayonnement UV</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ultraviolet radiation</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Aluminium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Aluminium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Fabrication</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Fabrication</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>CVD</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Réponse spectrale</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Spectral response</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Détecteur UV</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ultraviolet detectors</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Dispositif photoconducteur</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Photoconducting devices</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
</fC03>
<fN21>
<s1>228</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0032M000119</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 011D50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 011D50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0336877
   |texte=   Photoresponsivity of ultraviolet detectors based on InxAlyGa1-x-yN quaternary alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024